

From Environmental Inequities to Health Disparities: A Remote Sensing and GIScience Study of the Effects of Socioeconomic Status and Greenspace on Infant Gut Microbial Community Composition in the WHEALS Cohort

Jessica Worley^{1,2,3} (jessicaworley@wayne.edu), Qiong Zhang^{1,2,3}, Frederick Strale^{2,4} Christine Cole Johnson^{1,2,3}

Center for Urban Responses to Environmental Stressors (CURES), Wayne State University;

Public Health Sciences, Henry Ford Health; Dept. of Epidemiology and Biostatistics, Michigan State University

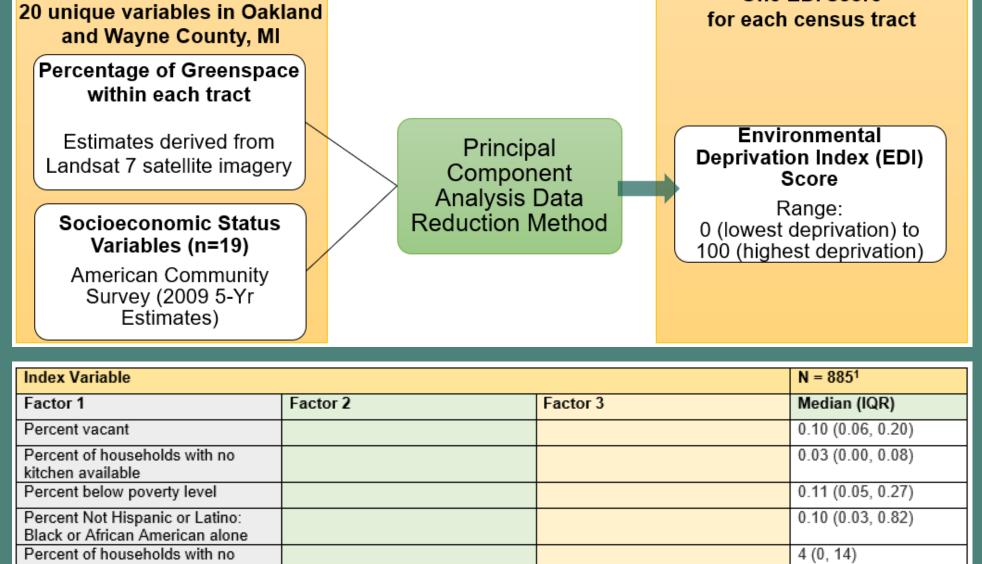
Funded by NIMHD P50MD017351 Pilot Award

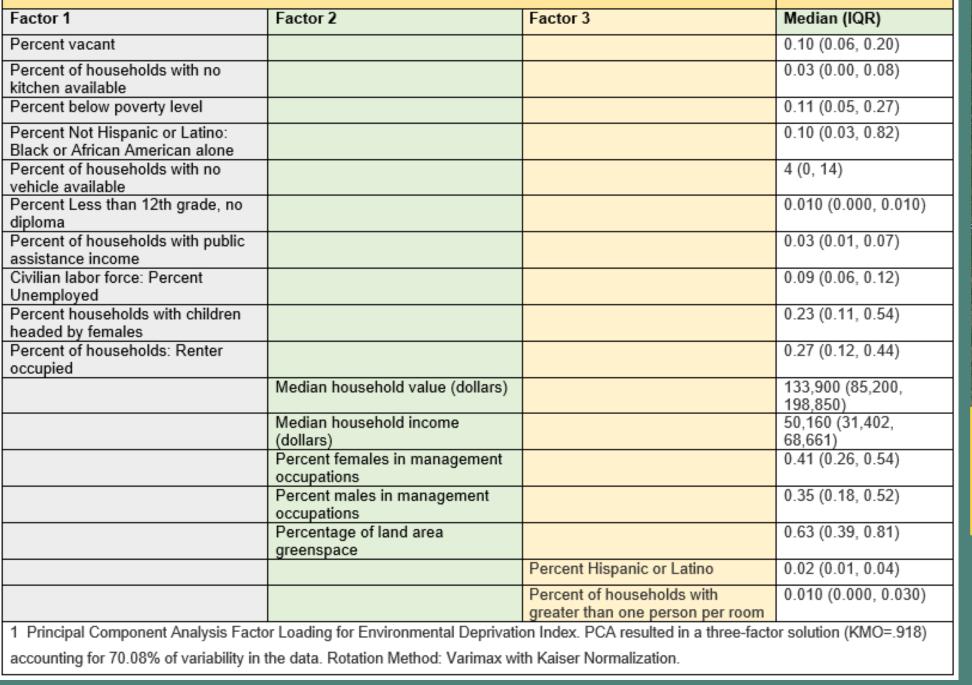
Introduction

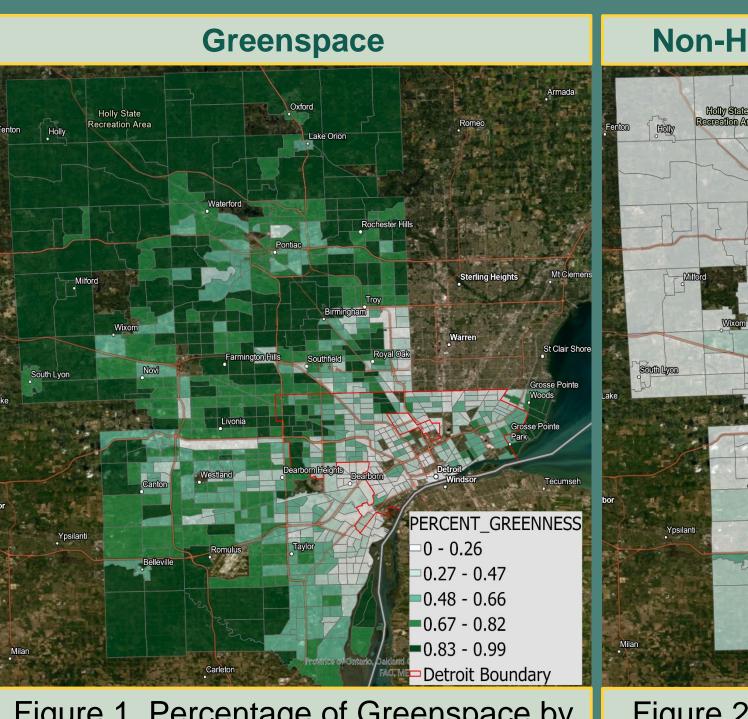
- An ever-increasing literature implicates the human gastrointestinal (GI) microbial community composition (MCC) as a key player in governing human health. GI MCC in the first year of life is crucial to optimizing lifelong immunity.
- MCC to which humans are exposed has presumably changed due to urbanization, decreasing greenspace exposure (e.g., trees, parks,) to richer microbial environments.
- Reduced greenspace exposure and low socioeconomic status (SES) may work together to create a suboptimal environment for infant GI MCC development and contribute to observed health disparities in low SES, urban populations.

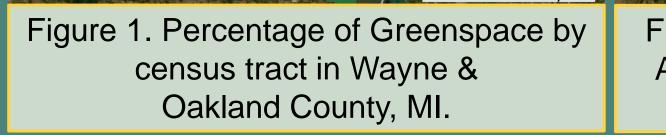
KEY QUESTIONS

- Is greenspace exposure associated with more traditional measures of SES?
- Is SES, as measured by our *Environmental Deprivation Index*, associated with infant GI MCC measures?
- Is greenspace exposure proximal to participant residence (r=0.25 mi) associated with infant GI MCC measures in our socioeconomically and racially diverse cohort?


Cohort Data


- Wayne County Health Environment & Allergy Longitudinal Study (WHEALS) is a birth cohort of 1200+ socioeconomically and racially diverse children throughout metro Detroit, MI.
- Our analysis utilized a sample of 293 infant stool samples, taken at ages 1 & 6 months from 2003-2007 with 16S rRNA sequencing data of infant gut MCC.


Methods


- Landsat 7 satellite imagery was used to estimate percentage of greenspace within each census tract in metro-Detroit, MI.
- An Environmental Deprivation Index (EDI) was constructed using Principal Components Analysis that includes 17 American Community Survey (2009 5-yr estimates) SES variables and the greenspace estimates.
- Landsat 7 satellite imagery was also used to estimate greenspace within a 0.25 mi radius of participant addresses.
- Geographic Information Systems (GIS) was used to understand geospatial patterns of EDI.
- Associations between EDI scores and MCC measures of evenness, diversity, and richness were estimated.

Constructing the Environmental Deprivation (EDI) Index

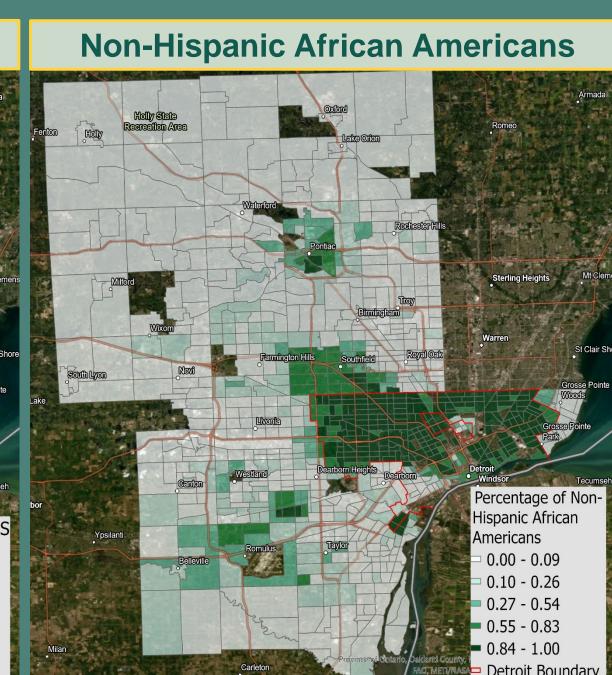


Figure 2. Percentage of Non-Hispanic African Americans by census tract in Wayne & Oakland County, MI.

Environmental Deprivation Scores

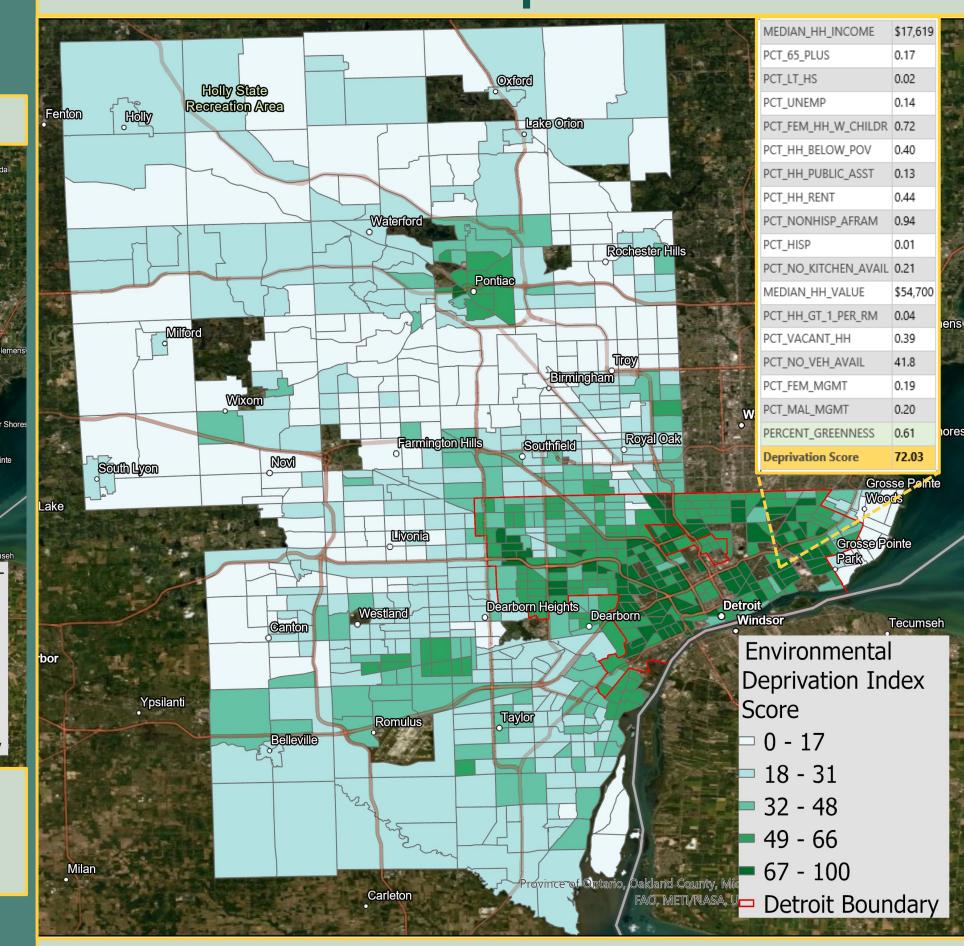


Figure 3. Environmental Deprivation Index Scores by census tract in Wayne & Oakland County, MI.

Microbial Community Composition

1 M	onth Samples		EDI	Greenness in 0.25 Mile radius Buffer
1 Month	Personal Greenness in 0.25 Mile radius Buffer	Pearson Correlation	452**	
		Sig. (2- tailed)	<.001	
		N	208	
	observed_species	Pearson Correlation	.061	095
		Sig. (2- tailed)	.385	.167
		N	208	214
	simpson_reciprocal	Pearson Correlation	.066	101
		Sig. (2-tailed)	.344	.140
		N	208	214
	pielou_evenness	Pearson Correlation	.150*	106
		Sig. (2- tailed)	.031	.122
		N	208	214
	PD_whole_tree	Pearson Correlation	.074	098
	on is significant at the 0.01 level (2-tailed).	Sig. (2- tailed)	.291	.154
*. Correlation is significant at the 0.05 level (2-tailed).		NI	208	21/

6 Month Samples				radius	
	-		EDI	Buffer	
6 Month	Personal Greenness in 0.25 Mile radius	Pearson Correlation	609**		
	Buffer	Sig. (2- tailed)	<.001		
		N	79		
	observed_species	Pearson Correlation	.191	171	
		Sig. (2- tailed)	.092	.129	
		N	79	80	
	simpson_reciprocal	Pearson Correlation	.261*	209	
		Sig. (2- tailed)	.020	.063	
		N	79	80	
	pielou_evenness	Pearson Correlation	.187	260 [*]	
		Sig. (2- tailed)	.099	.020	
		N	79	80	
	PD_whole_tree	Pearson Correlation	.174	146	
**. Correlation is significant at the 0.01 level (2-tailed).		Sig. (2-tailed)	.125	.196	
*. Correlation	is significant at the 0.05 level (2-tailed).	N	79	80	

- Infant GI MCC at 1 month: **EDI score was significantly associated with Pielou's evenness** (r=.15, p=.031), a measure that describes relative differences in the abundance of various species in the community
- At 6 months, **EDI score was significantly associated with Simpson's Reciprocal Diversity Index** (r=.261, p=.02), a measure of diversity, which takes into account both species richness, and an evenness of abundance among the species present.
- Percentage of greenspace within a 0.25 mi buffer of participant address had a significant negative association with Pielou's evenness (r=-.26, p=.02) at 6 months.

Implications

- Greenspace exposure is a potentially important overlooked variable in studying health disparities that shows geographic patterns similar to traditional SES measures.
- Current hypotheses propose greenspace impacts health indirectly through routes like stress reduction and behavior modification. We propose a potential direct mechanism through the GI MCC's impact on immune development.
- Proximal greenspace showed a negative association with MCC at 6 months, indicating that it may be related to the stabilization process of the GI MCC.
- The significant impact of EDI on MCC emerged earlier than personal greenness exposure in life and continued as the GI MCC assembled during infancy.

Future Directions

- Validate our findings with (> 500 rRNA) additional samples from WHEALS infants and the same children at 10 years of age.
 - Utilize existing house dust MCC samples from infant residences to examine environmental MCC as a potential mediating pathway.
- Examine gender and race differences in the influence of EDI and greenness on infant GI MCC and include more environmental factors in the EDI, such as air pollution.
- Examine associations between the external environment, MCC, and health outcomes to explore greenspace exposure as a potential avenue for public health intervention.